A device that detects leaky pipes also won top prizes

The big winner at this year’s MIT $100K Entrepreneurship Competition aims to drastically accelerate artificial-intelligence computations — to light speed.

Devices such as Apple’s Siri and Amazon’s Alexa, as well as self-driving cars, all rely on artificial intelligence algorithms. But the chips powering these innovations, which use electrical signals to do computations, could be much faster and more efficient.

That’s according to MIT team Lightmatter, which took home the $100,000 Robert P. Goldberg grand prize from last night’s competition for developing fully optical chips that compute using light, meaning they work many times faster — using much less energy — than traditional electronics-based chips. These new chips could be used to power faster, more efficient, and more advanced artificial-intelligence devices.

“Artificial intelligence has affected or will affect all industries,” said Nick Harris, an MIT PhD student, during the team’s winning pitch to a capacity crowd in the Kresge Auditorium. “We’re bringing the next step of artificial intelligence to light.”

Two other winners took home cash prizes from the annual competition, now in its 28th year. Winning a $5,000 Audience Choice award was change:WATER Labs, a team of MIT researchers and others making toilets that can condense waste into smaller bulk for easier transport in areas where people live without indoor plumbing. PipeGuard, an MIT team developing a sensor that can be sent through water pipes to detect leaks, won a $10,000 Booz Allen Hamilton data prize.

The competition is run by MIT students and supported by the Martin Trust Center for MIT Entrepreneurship and the MIT Sloan School of Management.

Computing at light speed

Founded out of MIT, Lightmatter has developed a new optical chip architecture that could in principle speed up artificial-intelligence computations by orders of magnitude.